
COIS 4050H – Assignment #2

Simon Willshire (0491272)

1.

Selection (Version 2) of groups size 5 is proven to be worst-case time O(n), however for the following

algorithm, of groups

size 3:

Reference Code:

Proof:

Let T(n) represent the worst case time complexity for Selection

(Version 2) with group sizes of 3.

Note: Assume sorting call is O(1) time, as length of n is small

(< 50 elements).

Median of Medians: Finding the cost of grouping by 3:

Each median found will throw away more elements at every

stage of recursion over the grouping of 5 elements, which is

able to get a more accurate reading of the numbers available.

Each Median is then at least: [
[

]

] [

]

In General:

 {

 ([

]) ([

])

 If n < 50, or otherwise.

Groups of 5 Inequality: (

) (

)

Groups of 3 Inequality: (

) (

)

Proof by Induction

Base Case: for n < 50 (linear sort algorithm, ex. mergesort)

Inductive Hypothesis: Assume true for 1 to n-1.

Inductive Step:

 for

 ([

]) ([

])

 ([

]) ([

])

Therefore the Selection (Version 2) algorithm with groups of 3 has non-linear time complexity.

2.

Design
A grid with dimensions may be split into boards, and can continue to do so recursively

decrementing k until a final breaking case of board dimensions.

Each grid must be filled with a full (3 tile) piece, a part of another piece, or the first tile (labeled 0).

For each 2x2 segment, identify the missing segment, based on the last placed tile location which can be set from the

recursive call.

The first should be placed with surrounding tile before the recursive call is invoked, as it is detrimental to the

algorithm, as it may be placed on even or odd tiles, making the algorithm more bloated than it needs to be.

Once a call has placed its tile, it will call itself 4 times, one for each of the grid segments it may have produced,

provided that k > 2 (recursive break at 2x2).

Note: Tiles marked one, missing bottom left

quadrant, where first tile marked 0 is placed.

First Split:

calling 4 grids 4x4

Second split

calling 4 grids 2x2

Implementation in C#
Where k begins at 3 (grid

Note:
missing =

{TOP_LEFT = 1,

TOP_RIGHT = 2,

BOTTOM_LEFT = 3,

BOTTOM_RIGHT = 4};

For placeTile(…) call which checks if the

location is free, and places the tiles according

to the coordinates given and missing value.

Every recursive call divides the dimensions of

the grid, as well as the coordinates of the grid

portion to be called into 2.

Using n as our current grid dimensions of one

side, we are able to recursively call other grids

from our section of grid. This is done by

stepping x + n, and y + n for grids left and

below the current recursed grid.

Step k == 4 (Second Recursive step):

Step k == 2 (Third Recursive step):

3.

Design

An array of integers may be split into , and those arrays (left and right) can be halved once again into

 (Where n represents the original array size).

Once the arrays have been split to comparable sizes (pair of elements), each can be compared. If any

arrays are of size one, use them in the next comparison after an element has been eliminated.

Once all arrays have been compared, if any element still exists, it is then the majority number in the array.

Implementation in C#
Where array size (n) is 40,

Note: I misspelled elements as

elephants, so I had a little fun with the

comments.

Having assembled an array, and

invoking findMajority(), the call will

split the array into two.

Every split, left side takes floor, right

side takes ceiling of the division

(Otherwise may have missing

elements.

Once the array has been equally split,

they are recursively called for left and

right.

If any majority element(s) are returned,

the list sizes are compared; one with

more elements will be of greater

majority.

Once the recursive break of size 2

occurs, elements are compared

individually, returning a majority or

null.

If any arrays of size 1 occur, the result

is returned.

For 40 numbers randomly generated from 0 to 100:

For 40 numbers randomly generated from 1 to 5:

Time Complexity

Split:

Recursion: (

)

Comparison:

Recurrence Relation: (

)

Using the Master Theorem:

 (

)

If ()

 () : Case 2 (no

offset constant)

 :

Therefore this majority algorithm has a time

complexity of:

