
COIS 4050H – Assignment #2 

Simon Willshire (0491272)  

1. 

Selection (Version 2) of groups size 5 is proven to be worst-case time O(n), however for the following 

algorithm, of groups 

size 3: 

Reference Code: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof:  

Let T(n) represent the worst case time complexity for Selection 

(Version 2) with group sizes of 3. 

Note: Assume sorting call is O(1) time, as length of n is small 

(< 50 elements). 

Median of Medians: Finding the cost of grouping by 3: 

Each median found will throw away more elements at every 

stage of recursion over the grouping of 5 elements, which is 

able to get a more accurate reading of the numbers available. 

Each Median is then at least: [
[
 

 
]

 
]  [

 

 
]    

 

 
   



In General: 
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      If n < 50, or otherwise. 

 

Groups of 5 Inequality:       (
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Groups of 3 Inequality:         (
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Proof by Induction 

 
Base Case:           for n < 50 (linear sort algorithm, ex. mergesort) 

Inductive Hypothesis: Assume true for 1 to n-1. 

Inductive Step: 
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Therefore the Selection (Version 2) algorithm with groups of 3 has non-linear time complexity. 

2. 

Design  
A grid with        dimensions may be split into               boards, and can continue to do so recursively 

decrementing k until a final breaking case of     board dimensions. 

Each grid must be filled with a full (3 tile) piece, a part of another piece, or the first tile (labeled 0). 

For each 2x2 segment, identify the missing segment, based on the last placed tile location which can be set from the 

recursive call. 

The first should be placed with surrounding tile before the recursive call is invoked, as it is detrimental to the 

algorithm, as it may be placed on even or odd tiles, making the algorithm more bloated than it needs to be. 

Once a call has placed its tile, it will call itself 4 times, one for each of the grid segments it may have produced, 

provided that k > 2 (recursive break at 2x2). 



 

Note: Tiles marked one, missing bottom left 

quadrant, where first tile marked 0 is placed. 

 

 

 

 

 

First Split: 

calling 4 grids 4x4 

 

 

 

Second split 

calling 4 grids 2x2 

 

 

Implementation in C# 
Where k begins at 3 (        grid 
 

Note:  
missing =  

{TOP_LEFT = 1,  

TOP_RIGHT = 2,  

BOTTOM_LEFT = 3,  

BOTTOM_RIGHT = 4}; 

 

For placeTile(…) call which checks if the 

location is free, and places the tiles according 

to the coordinates given and missing value. 

 

Every recursive call divides the dimensions of 

the grid, as well as the coordinates of the grid 

portion to be called into 2. 

 

Using n as our current grid dimensions of one 

side, we are able to recursively call other grids 

from our section of grid. This is done by 

stepping x + n, and y + n for grids left and 

below the current recursed grid. 



Step k == 4 (Second Recursive step): 

 

Step k == 2 (Third Recursive step): 

 

3. 

Design 

An array of integers may be split into    , and those arrays (left and right) can be halved once again into 

    (Where n represents the original array size). 

 



Once the arrays have been split to comparable sizes (pair of elements), each can be compared. If any 

arrays are of size one, use them in the next comparison after an element has been eliminated.  

Once all arrays have been compared, if any element still exists, it is then the majority number in the array. 

 

Implementation in C# 
Where array size (n) is 40, 

 

Note: I misspelled elements as 

elephants, so I had a little fun with the 

comments. 

Having assembled an array, and 

invoking findMajority(), the call will 

split the array into two. 

Every split, left side takes floor, right 

side takes ceiling of the division 

(Otherwise may have missing 

elements. 

Once the array has been equally split, 

they are recursively called for left and 

right. 

If any majority element(s) are returned, 

the list sizes are compared; one with 

more elements will be of greater 

majority.  

Once the recursive break of size 2 

occurs, elements are compared 

individually, returning a majority or 

null. 

If any arrays of size 1 occur, the result 

is returned. 

 

 

 

 

 

 

 



 

For 40 numbers randomly generated from 0 to 100: 

 

For 40 numbers randomly generated from 1 to 5: 

 

 

Time Complexity 

 

Split:         

Recursion:    (
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Comparison:     

Recurrence Relation:   (
 

 
)      

Using the Master Theorem: 
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If       (      ) 

        (      ) : Case 2 (no 

offset constant) 

                :       

           

Therefore this majority algorithm has a time 

complexity of:         

 


