
COIS 4050H – Assignment #4

Simon Willshire (0491272)

Euclidian Traveling Salesperson Problem (ETSP)
The Comparison of Optimum and Approximate Solutions

1.
For the contents of this assignment, I have used

static values for city locations, and assumed city 1

at [0, 0] is the starting/ending position. I have

chosen to do this so that I can work out the correct

solution on paper to prove that the program is

indeed correct, rounding errors permitting.

Other considerations:

- I will use Prim’s Algorithm for MST

- I will use a non-recursive DFS using a stack

- I will use a brute force solution to show the true

optimal solution.

2.1 The Optimal Algorithm

To solve the ETSP, the most obvious answer is to

compare all permutations and see which is the most

optimal (Brute force solution). This approach is

still roughly , where represents the number

of cities/locations in the problem. So in this case

we have permutations to check. If we

know the starting location, we can assume

 , so a much smaller 24 permutation.

After rummaging with some paper for a while, I

came across the solution located on the right, with

a total tour distance of 40.736.

2.2 Optimal Implementation in C#

To implement the brute force approach, I needed to enumerate all of the permutations of the cities. Also

note: permutations must begin and end with the starting position, 0. This means that we only need to find

combinations ranging from 1 to 4 and insert them between 0s.

Permutations: {0, w, x, y, x, 0}

After all permutations have been found, we sum the distance between each of the cities to find a total tour

length. We then find the minimum tour length to find the optimum solution.

The code segment on the right is the function which is called from the main ETSP class to return the

optimum length using the brute force algorithm.

See the next page for the full Brute force class code.

Note: I used Knuth’s

Lexicographic Permutation

algorithm to generate the

next permutation given a

series of numbers.

BruteCompute() runs

NextPermutation() until

there are no more

permutations to generate.

NextPermutation() uses

Knuth’s Algorithm to

generate the next

permutation in the series,

and then adds it to the

permutation stack.

2.2 Testing & Output
Before discovering Knuth’s algorithm as a

permutation solution, I had attempted to

program a set of for loops, one for each

parent, and throwing the permutations of

parent arrays at my DFS.

calculateTourDistance(…) function. This

produced some results, but also produced

results of 0 distances, where cities were

their own parents, and not linking to the

starting city. I then attempted to use a

recursive permutation stepping function,

but I was not pleased with the overhead.

(See right)

I had originally popped the permutation stack directly into the passing parameter of the

DFS.calculateTourDistance(…) then realised I do not need to generate a parent array, as I already have a

full route established. Having the permutation popped into the parent array (I was not thinking…)

produced some very odd results. The save all seemed to be Knuth’s, and here are the results using the

Brute class on the previous page:

The only issue that I would fix time permitting, is to process the permutations tour total within the

NextPermutation() call, otherwise we have to wait for every permutation to be added to a stack before

processing can proceed! (At 12 cities, the program had allocated 3.4GB of memory towards the process

for all permutations…)

3.1 The Approximation Algorithm

Using Prim’s Algorithm to create an approximate

solution to the ETSP, we obtain a minimum

spanning tree. This MST can be traversed using a

Depth First Search (DFS) algorithm to obtain an

approximate total tour distance (Hamiltonian

circuit). After traversing the tree and encountering

a leaf node, the tour must add an additional distance

to backtrack to its parent. This occurs in our

example between 4 and 3. Once the tree has been

traversed using DFS, we need to add the distance

from the last traversed node, to the start position:

see 2 to 0.

3.2 Approx. Implementation in C#

The approximate solution follows the one

outlined in 3.1. Minimal distances of each

cities are calculated and compared to produce

a MST using Prim’s Algorithm, then the tree

was traversed and totalled to produce a tour

distance of roughly 52.3 to traverse all

points and return to the starting position.

Optimal Tour: 1, 5, 4, 3, 2, 1.

Approximation Tour: 1, 5, 4, 2, 3, 1.

The next page shows the DFS code used to

traverse the MST created from Prim’s

Algorithm.

Shared Code

3.2 Testing & Output Approximation Algorithm

I was able to for the most part successfully run Prim’s and DFS search without too much hassle (Class

notes with pseudo code were extremely clear this time around). Here is the output of the approximation

algorithm. Each city is identified, and for each a minimum distance to the next city was printed.

The approximation algorithm returned a distance of 52.262.

4.1 Average Approximation Ratio

Ratio is expected to be under 2 times to optimal solution.

Approximation Ratio

4.2 Single Threaded Algorithm Performance

When there are under 9 cities, interestingly brute force is on par or faster than the Approximation.

When there are over 9 cities, we are not able to compare to the approximation algorithm anymore.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

< 5 7 8 9

Approximate

Brute Force

0

0.5

1

1.5

2

2.5

< 5 7 8 9 10

Brute Force

Approximate

Approximation Optimal

52.262 40.735

