COIS 4050H — Assignment #4
Simon Willshire (0491272)

Euclidian Traveling Salesperson Problem (ETSP)

The Comparison of Optimum and Approximate Solutions

1.

For the contents of this assignment, | have used
static values for city locations, and assumed city 1
at [0, 0] is the starting/ending position. | have
chosen to do this so that | can work out the correct
solution on paper to prove that the program is
indeed correct, rounding errors permitting.

Other considerations:

- I will use Prim’s Algorithm for MST

- I will use a non-recursive DFS using a stack

- 1 will use a brute force solution to show the true
optimal solution.

2.1 The Optimal Algorithm

To solve the ETSP, the most obvious answer is to
compare all permutations and see which is the most
optimal (Brute force solution). This approach is
still roughly O (n!), where n represents the number
of cities/locations in the problem. So in this case
we have n = 5: 120 permutations to check. If we
know the starting location, we can assume O ((n —
1)), so a much smaller 24 permutation.

After rummaging with some paper for a while, |
came across the solution located on the right, with
a total tour distance of 40.736.

1

2

[0, 0]

[2,11]

/

2

~11.18

~5.66

[0, 0]

3 [8,14]

4 [12,6]
5 [4,4]
/ 3 (8, 14]
~6.71
2, 11]
~8.94
A4 [12, 6]
~8.25
—
5 [4,4]

Brute Force
Tour Distance = ~40.736

2.2 Optimal Implementation in C#

To implement the brute force approach, | needed to enumerate all of the permutations of the cities. Also
note: permutations must begin and end with the starting position, 0. This means that we only need to find
combinations ranging from 1 to 4 and insert them between 0s.

Permutations: {0, w, X, y, X, 0}

After all permutations have been found, we sum the distance between each of the cities to find a total tour
length. We then find the minimum tour length to find the optimum solution.

The code segment on the right is the function which is called from the main ETSP class to return the
optimum length using the brute force algorithm.

See the next page for the full Brute force class code.

public double BruteETSP(int startCity)

i

wy

Console.WriteLine("\nETSP Optimal: Brute Force Algorithmin™);

int tourCounter = 8;
double minTour = double.MaxValue;
int[] tourCities = new int[numCities];

Brute brute = new Brute(numCities, numPermutations);
brute.BruteCompute();

while (brute.permutations.Count != @)

{

int[] cities = brute.permutations.Pop();
double t = @;
for (int ¢ = 1; ¢ < numCities; c++)

t += adj[cities[c-1], cities[c]];

// Add distance from last city to first
t += adj[cities[numCities - 1], startCity];

if (t < minTour)

1
minTour = t;
tourCities = cities;
}
tourCounter++;

}

for (int ¢ = @; ¢ < numCities; c++)
Conscle.Write("[{8}]", tourCities[c]);

Console.WriteLine("[@]");

Console.WriteLine("\nTour Distance: “t{8}", minTour);

return minTour;

public class Brute

1

public Brute(int nCities, int nPerms)
{
permutations = new Stack<int[]x();
numCities = nCities;
numPerms = nPerms;

¥

public woid BruteCompute()

{
int[] ¢ = new int[numCities - 1];
for (int 1 = 1; i < numCities; i++)

c[i - 1] = 1i;

while (NextPermutation(c)) { }

}

// Using Knuth's Lexicographic Algorithm,
// Reference: http://42studios.com/20813/87/lexicographic-permutaticns
private bool NextPermutation(int[] numList)

1

var largestIndex = -1;
for (var 1 = numList.Length - 2; 1

i

if (numList[i] < numList[i + 1]

{

largestIndex = ij
break;

}

if (largestIndex < @) return false;

var largestIndex2 = -1;
for (var i = numList.Length - 1; i

{

>= B i--)

)

»=8; i--)

if (numList[largestIndex] < numList[i])

1

largestIndex2 = 1i;
break;

}

var tmp = numList[largestIndex];
numList[largestIndex] = numList[lar
numList[largestIndex2] = tmp;

for (int i = largestIndex + 1, j =
i
tmp = numList[i];
numList[i] = numList[j];
numList[j] = tmp;
h

int[

1 n = new int[numCities];
for (
n

int p = 1; p < numCities; p++)
[p] = numList[p - 1];

permutations.Push(n);

return true;

¥

private int numCities;
private int numPerms;
public Stack«<int[]» permutations;

gestIndex2];

numList.Llength - 1; i < §; i++, j--)

Note: | used Knuth’s
Lexicographic Permutation
algorithm to generate the
next permutation given a
series of numbers.

BruteCompute() runs
NextPermutation() until
there are no more
permutations to generate.

NextPermutation() uses
Knuth’s Algorithm to
generate the next
permutation in the series,
and then adds it to the
permutation stack.

2.2 Testing & Output

Before discovering Knuth’s algorithm as a public int[] BruteCompute()
permutation solution, | had attempted to 1 BN i e 6T
program a set of for loops, one for each ComputeAllPermutations(1, 1, ref p);
parent, and throwing the permutations of SHETDe

parent arrays at my DFS.
. . . private void ComputeAllPermutations(int start, int c, ref int[] p)
calculateTourDistance(...) function. This {

1
J

produced some results, but also produced 1T (c < noacistes * TS

results of O distances, where cities were ¥ pecwrtathons. Ao

their own parents, and not linking to the } i i

starting city. | then attempted to use a for (int i = @; i <= numCities; i++)

recursive permutation stepping function, : oLl i;

but I was not pleased with the overhead. ComputeAllPermutations(i + 1, c + 1, ref p);
(See right) } :

I had originally popped the permutation stack directly into the passing parameter of the
DFS.calculateTourDistance(...) then realised I do not need to generate a parent array, as I already have a
full route established. Having the permutation popped into the parent array (I was not thinking...)
produced some very odd results. The save all seemed to be Knuth’s, and here are the results using the
Brute class on the previous page:

The only issue that | would fix time permitting, is to process the permutations tour total within the
NextPermutation() call, otherwise we have to wait for every permutation to be added to a stack before
processing can proceed! (At 12 cities, the program had allocated 3.4GB of memory towards the process
for all permutations...)

i H\Dropbox\WI2014\COIS 4050H\Assignment 4\ETSP\bin\Debugh\ETSP.exe E=E™
with 5 Cities

[disztances to other cities

[a 11.18 i6.12 13.42 .66
[11.18 @ 6.71 11.18 7.28
[16.12 6.1 5] g.94 18.77
[13.42 11.18 §.74 a 8.25
[5.66 7.28 18.77 8.25 a

Approximation Algorithm: Prim's

5 has parent: 1 with min. distance: 5.65685424949238

2 has parent: 5 with min. distance: 7.280189889286852

3 has parent: 2 with min. distance: 6.78828393249923%

ity 4 has parent: 5% with min. distance: 8.24621125123532
[BI1[41031[11[2]1[@A]

Tour Distance: 52.2621806607034

ETSP Optimal: Brute Force Algorithm
[B1041031[21[11[@1]
Tour Distance: 4@.73588123@7252

3 (8 14]

3.1 The Approximation Algorithm /~e.71
Using Prim’s Algorithm to create an approximate 2) 1
solution to the ETSP, we obtain a minimum
spanning tree. This MST can be traversed using a ~16.12
Depth First Search (DFS) algorithm to obtain an
approximate total tour distance (Hamiltonian
circuit). After traversing the tree and encountering
a leaf node, the tour must add an additional distance
to backtrack to its parent. This occurs in our
example between 4 and 3. Once the tree has been
traversed using DFS, we need to add the distance

v 4 129

Prim’s MST & DFS

from the last traversed node, to the start position: 1 [0,0] Tour Distance = ~52. 262

see 210 0.

fhess 3.2 Approx. Implementation in C#
public PrimsMsT(int nCities)

{ cize - nCities: The approximate solution follows the one
parent = new int[size]; outlined in 3.1. Minimal distances of each
distance - new doublelsizel; cities are calculated and compared to produce
included = new bool[size];
adjacency = new double[size, size]; a MST using Prim’s Algorithm, then the tree

! was traversed and totalled to produce a tour

public woid setAdjacency(double[,] adj) { adjacency = adj; } distance of roughly 52.3 to traverse all
public int[] getParents() { return parent; } . A .
pOlntS and return to the Startlng pOSItlon.

public void calculateMsT(int index)

{

/f Include root vertex Optlmal Tour: 1,5,4,3,2,1.

included[index] = true; . . .

for (int i = 1 i < size; i++) Approximation Tour: 1,5,4, 2,3, 1.

1

iiiii;ﬁj{i} : i:i:;f"cy[a' i The next page shows the DFS code used to
for (imt 5 — o < sis . o traverse the MST created from Prim’s
or (int j = @; j < size - 1; j++) // For each edge K
{ Algorithm.
int k = 8;

double min = double.MaxValue;

for {(int i = 8; 1 < size; i++)

1
if (!included[i] &8 distance[i] < min)
1
min = distance[i];
k = 1i;
¥
¥

included[k] = true;
for (int 1 = @; 1 < size; i++)

1
if (lincluded[i] && (adjacency[k, i] < distance[i]))
1
distance[i] = adjacency[k, i];
parent[i] = k;
¥
¥

public static class DFS
{

public static double calculateTourDistance(int start, City[] Cities, int[] parent, double[,] adj)

{

Stack<City> stack = new Stack<City>();

bool hasChild = false; /f Keep track of when to backtrack increment
double tourDistance = @; /f Keep a running total

City v = Cities[start]; // Root wertex at start city

City last = v; // Reference to return

stack.Push(v); // Push in the root node

while (stack.Count > @)

{

tourDistance += adj[parent[v.id], v.id]; // Every node popped, must increment distance
v = stack.Pop();

if (!w.visited)
{
/{ Go through each city, if they hawve children,
// add them to traverse into,
v.visited = true;
hasChild = false;
for (int ¢ = 1; c < Cities.Length; c++)
{
if (¢ != v.id)
1
if (parent[c] == v.id)
1
stack.Push(Cities[c]);
hasChild = true;

}

/f If the city has no children (leaf), add the backtrack distance
if (!hasChild)
tourlistance += adj[parent[v.id], v.id];

}

last = wv;

3

// Add the distance from the deepest node back to the start node (Circuit)
tourDistance += adj[start, last.id];

return tourDistance;

Shared Code

public struct City

false; }

{
public City(int cid, int =v, int yv) { id = cid; % = xv; y = yv; visited =
public int id;
public int x;
public int y;
public bool visited;
¥
class ETSP
1
double[,] adj;
const int numCities = 5;
public static City[] Cities =
1
new City(e, @, @),
new City({1, 2, 11},
new City(2, 8, 14},
new City(3, 12, 6},
new City(4, 4, 4)
1;
public ETSP(int startCity)
1
// Create and calculate distances our adjacency matrix from city locations,
adj = new double[numCities, numCities];
for (int i = @; i < numCities; i++)
for (int j = @; j < numCities; j++)
if (1 == §)
adj[i, j] = @;
else
adj[i, j] = getDistance(Cities[i], Cities[{]);
ApproxETSP(startCity);
1
public double ApproxETSP(int startCity)
1
PrimsMST mst = new PrimsMST{numCities);
mst.setAdjacency(adj);
mst.calculateMsT(startCity);
return DFS.calculateTourDistance(startCity, Cities, mst.getParents(), adj);
1
public deouble getDistance(City cl, City c2)
1
return Math.Sgrt(Math.Pow((cl.x - c2.x), 2) + Math.Pow((cl.y - c2.y), 2});
1
¥

public class Ad

{

public static woid Main()

{

new ETSP(@);
Conscle.ReadKey();

3.2 Testing & Output Approximation Algorithm

I was able to for the most part successfully run Prim’s and DFS search without too much hassle (Class
notes with pseudo code were extremely clear this time around). Here is the output of the approximation
algorithm. Each city is identified, and for each a minimum distance to the next city was printed.

The approximation algorithm returned a distance of 52.262.

1" HADropboxA\WI201MCOIS 4050H \Assignment PETSPAbin\DebughETSP.exe

with § Cities

[distances to other cities

[a 11.18 16.12 13.42 5 .66
[11.18 @ 6.71 11.18 ?.28
[16.12 6.71 a §.94 18.77
[13.42 11.18 g.94 a 8.25
[5.66 ?.28 18,77 §.25 a

it
1
2
3
4
5

Approximation: Prim’s Algorithm

L has parent: 1 with min. distance: 5.65685424949238
2 has parent: 5 with min. distance: 7.28018988%286852
3 has parent: 2 with min. distance: 6.7882039324993%7
4 has parent: 5 with min. distance: 8.24621125%123532

Route: [AI[41021011[2]108]
Distance: 52.26218687834

= | B |

B filey//H:/Dropbox/WI2014/COI5 4050H/Assignment 4/ET5P/bin/Release/ETSP.EXE

[8.86 il
2.24 13.15
[18.77 18.44
17.4% 12.17
[12.53 15.13
16.83 17.69
[?7.87 3.16
a 11.4
[6.32 14.14
11.4 5]

ETSP Approximation Algorithm: Prim’s
Tour Route: [BI[11 1061041092 1031061021051 0181C710111I8]

Tour Distance: 63.492223995544
Approximation alg took: B0:00:06.01602458

ETSP Optimal: Brute Force Algorithm
[BI[11108103109 1410111181051 02]106106]

Tour Distance: 57.3534743142393
Brute Force alg took: BB:83:54.77797722

5.1
16.16
16.49
3

6.71
12.88
13
5.66
?.87

4.1 Average Approximation Ratio

Ratio is expected to be under 2 times to optimal solution. Approximation | Optimal

L. . A 52.262 40.735
Approximation Ratio = > =~ 1.282978

4.2 Single Threaded Algorithm Performance

0.035

0.03

0.025 //
0.02 /
0.015

0.01
e Approximate
0.005 >
== Brute Force
0 T T T 1

<5 7 8 9

When there are under 9 cities, interestingly brute force is on par or faster than the Approximation.

2.5
5 /
1.5
1
== Brute Force
0.5
= Approximate
0 1 1 1
<5 7 8 9 10

When there are over 9 cities, we are not able to compare to the approximation algorithm anymore.

