
COIS 4050H – Assignment #4 

Simon Willshire (0491272) 

Euclidian Traveling Salesperson Problem (ETSP)  
The Comparison of Optimum and Approximate Solutions 
 

1.  
For the contents of this assignment, I have used 

static values for city locations, and assumed city 1 

at [0, 0] is the starting/ending position. I have 

chosen to do this so that I can work out the correct 

solution on paper to prove that the program is 

indeed correct, rounding errors permitting. 

Other considerations:  

- I will use Prim’s Algorithm for MST 

- I will use a non-recursive DFS using a stack 

- I will use a brute force solution to show the true 

optimal solution. 

 

2.1 The Optimal Algorithm 

To solve the ETSP, the most obvious answer is to 

compare all permutations and see which is the most 

optimal (Brute force solution). This approach is 

still roughly      , where   represents the number 

of cities/locations in the problem. So in this case 

we have         permutations to check. If we 

know the starting location, we can assume      

    , so a much smaller 24 permutation. 

After rummaging with some paper for a while, I 

came across the solution located on the right, with 

a total tour distance of 40.736. 

  



2.2 Optimal Implementation in C# 
 

To implement the brute force approach, I needed to enumerate all of the permutations of the cities. Also 

note: permutations must begin and end with the starting position, 0. This means that we only need to find 

combinations ranging from 1 to 4 and insert them between 0s. 

Permutations: {0, w, x, y, x, 0} 

After all permutations have been found, we sum the distance between each of the cities to find a total tour 

length. We then find the minimum tour length to find the optimum solution. 

The code segment on the right is the function which is called from the main ETSP class to return the 

optimum length using the brute force algorithm. 

See the next page for the full Brute force class code. 

 

 

 

 



Note: I used Knuth’s 

Lexicographic Permutation 

algorithm to generate the 

next permutation given a 

series of numbers. 

BruteCompute() runs 

NextPermutation() until 

there are no more 

permutations to generate. 

NextPermutation() uses 

Knuth’s Algorithm to 

generate the next 

permutation in the series, 

and then adds it to the 

permutation stack.  



2.2 Testing & Output 
Before discovering Knuth’s algorithm as a 

permutation solution, I had attempted to 

program a set of for loops, one for each 

parent, and throwing the permutations of 

parent arrays at my DFS. 

calculateTourDistance(…) function. This 

produced some results, but also produced 

results of 0 distances, where cities were 

their own parents, and not linking to the 

starting city. I then attempted to use a 

recursive permutation stepping function, 

but I was not pleased with the overhead. 

(See right) 

I had originally popped the permutation stack directly into the passing parameter of the 

DFS.calculateTourDistance(…) then realised I do not need to generate a parent array, as I already have a 

full route established. Having the permutation popped into the parent array (I was not thinking…) 

produced some very odd results. The save all seemed to be Knuth’s, and here are the results using the 

Brute class on the previous page: 

The only issue that I would fix time permitting, is to process the permutations tour total within the 

NextPermutation() call, otherwise we have to wait for every permutation to be added to a stack before 

processing can proceed! (At 12 cities, the program had allocated 3.4GB of memory towards the process 

for all permutations…) 

 
 

  



3.1 The Approximation Algorithm 
 

Using Prim’s Algorithm to create an approximate 

solution to the ETSP, we obtain a minimum 

spanning tree. This MST can be traversed using a 

Depth First Search (DFS) algorithm to obtain an 

approximate total tour distance (Hamiltonian 

circuit).  After traversing the tree and encountering 

a leaf node, the tour must add an additional distance 

to backtrack to its parent. This occurs in our 

example between 4 and 3. Once the tree has been 

traversed using DFS, we need to add the distance 

from the last traversed node, to the start position: 

see 2 to 0. 

3.2 Approx. Implementation in C# 

The approximate solution follows the one 

outlined in 3.1. Minimal distances of each 

cities are calculated and compared to produce 

a MST using Prim’s Algorithm, then the tree 

was traversed and totalled to produce a tour 

distance of roughly 52.3 to traverse all 

points and return to the starting position. 

 

Optimal Tour:  1, 5, 4, 3, 2, 1. 

Approximation Tour:  1, 5, 4, 2, 3, 1. 

 

The next page shows the DFS code used to 

traverse the MST created from Prim’s 

Algorithm. 



 

 

  



Shared Code  



3.2 Testing & Output Approximation Algorithm 
 

I was able to for the most part successfully run Prim’s and DFS search without too much hassle (Class 

notes with pseudo code were extremely clear this time around). Here is the output of the approximation 

algorithm. Each city is identified, and for each a minimum distance to the next city was printed. 

The approximation algorithm returned a distance of 52.262. 

 

 

  



4.1 Average Approximation Ratio 
 

Ratio is expected to be under 2 times to optimal solution. 

Approximation Ratio  
 

 
          

4.2 Single Threaded Algorithm Performance 

 
When there are under 9 cities, interestingly brute force is on par or faster than the Approximation. 

 
When there are over 9 cities, we are not able to compare to the approximation algorithm anymore. 
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