
Linear Genetic Programming

An assessment of self-programming programs,
using simple esoteric language interpreters in C++

with insight into optimization and parallelization

COIS 4550H – Artificial Intelligence

Assignment #4

Simon Willshire (0491272)

What is Linear Genetic Programming?

A style of genetic programming which is not tree based1. Expressions are mapped to chromosome values,
and the resultant program is tested by a fitness value1. In order to determine the next generation, genetic
crossover is applied between two or more chromosomes in order to potentially increase the programs
fitness1. Syntax generated is generally a very simplified grammatically, as the more complex the
language, time to optimize the programs fitness is lengthened, despite the potential to decrease the length
of the program (Less instructions overall) 6. It is also essential that the language is able to compile in a
decent amount of time. The language which to compile is one of the more important aspects of this
technique, as the performance of such a brute force technique must be efficient in order to remain useful
in today’s applications.

Other styles of genetic programming typically involve tree-like structures, these methods, or are variants
of the linear programming technique discussed in this paper. Multi-Expression Programming (MEP) has
proved to be the most popular variant due to its ability to encode several expressions within a programs
chromosome. MEP excels in dealing with more complex target expressions, whereas the variant discussed
here (LGP) would have to store genetic operators (pre-defined functions) to manipulate its chromosome
similarly.

How Does it Work?

Initial chromosome generation

Generally the chromosome generation is simply filled by a linear congruential generator (fast random
number generator using an initial seed). However, a method with more entropy can be employed by other
means, such as hardware random generators which are supplied by many processors today which make
use of atmospheric noise, or an external source of seeding.

Languages

Using a General Purpose Language (GPL)
By using a restricted set of C for example, using limited processor registers and memory allocation for
each program. The importance here is restricting the language up to a simplified set of data types and
operators. Other available GPLs are higher level, typically script-like, and are faster compilation time for
the potentially lower performance; languages such as python. Other low level languages can be compiled
in script-like performance using interpreter-like solutions.

Using Machine Code or Assembly
By using random instructions at the lowest level of software, programs are capable of becoming the most
efficient on target machines. A step above machine language (Assembly) is sometimes used in order to be
more readable to allow for a more readable format. However, this option is capable of causing many
damaging instructions, such as accessing and setting memory locations outside of typical operating
bounds.

Using a GPL Interpreter
Similar to the above methodology, however, instead of passing each generation’s chromosome to generate
the GPL code, one can simply query the behaviour of the chromosome, and operate within the host
language. This has many advantages over other methods, as the capabilities of the host language do not

necessarily need to be limited: such as error handling, multithreading, and other hardware support. One
flaw of this method derives from its advantage: by using an interpreter scheme, we lose the ability to
operate at a lower processor level unless otherwise programmed in the host language.

Using a Custom Interpreter
Depending on the program which you intend to solve, you may choose to adjust the grammar of the
language you are interpreting. For example, you may choose to restrict memory and operate-able
variables, or customize the functions available to the language by defining optimized functions for the
language to use in order to solve/accomplish said task.

Chromosome Mutation/Selection Techniques
Many techniques can be employed in order to differentiate the next generations produced program. Here
are some examples which can be used, and what their advantages/disadvantages may be.

 Roulette: Random segments of the chromosome are mutated.
 Roulette Crossover: Random segments of next generation’s chromosome are combined with

other high fitness programs.
 Genetic Crossover: Can use single point or multi-point selection of the chromosome. For

example 1/2, 1/2 combination of two programs, or 1/3, 1/3, 1/3 of three, etc. Possibilities may not
necessarily be of equal proportions (could use indexed offsets of array), or adjust segments based
on the fitness of the programs.

What can it solve?

Technically speaking, anything and everything, with heavy dependence on the fitness and constraints the
user provides. This approach is essentially of self-programming design. However, the question as to how
much resources and time you wish to allocate towards solving the problem is the limitation.

Realistically speaking, there are many caveats which must be mitigated in order to use this technique with
viable results. These caveats come from the nature of the technique, where optimization of both
compilation time and process execution time of the bred programs becomes of increasing concern (bloat).
To resolve these issues, one may reduce chromosome length (reducing the programs capabilities),
reducing the memory allocation a single generated program may use, as well as adjusting the fitness
function in order to negatively feedback upon this program (this may also reduce accuracy of results
should the bloated program produce good results, but takes its time in order to achieve it).

Applications using LGP

Discipulus is modelling software which employs Linear Genetic Programming techniques. Specifically
makes use of binary sequences for genomes, and operates completely in machine code, each generation
optimizes model parameters during runtime. Discipulus claims to be 60-200 times faster than other
modelling platforms due to this design choice3. The application makes use of very simple techniques:
generating random pool of programs, from which 4 are selected randomly (technique unspecified,
assuming Linear Congruential Generator), these 4 are compared and 2 are selected with the highest
fitness3. These programs are now are processed through a genetic crossover technique to create 2 new
programs, both of which get added back into the program pool, and removes the 2 worst fitness
programs3. This process is then repeated until the fitness threshold has been met3. The genetic crossover
technique between the pair of fit programs uses a basic technique to swap instructions between the two

programs3. Afterward, a mutation takes place which swaps operators intelligently, for example the plus
(+) operator may become a (*) operator3. The advantage of this crossover method comes from the ability
to always have safe compilation syntax, as an operator switch is less likely to cause errors (other than
divide by 0 and the like). After the fitness threshold has been reached, Discipulus offers a decompilation
of their machine code into human readable ANSI C, Java, or Intel Assembly instructions 3.The resultant
code can then be optimized to the user’s liking3. Once satisfied, the result can be compiled into a DLL, or
COM object3. This modelling technique produces an increased performance, and as such the modelling
can continue to become more efficient and accurate the more time it spends reaching a higher fitness
value3.

Demonstrations and Comparisons

This simple LPG demonstration was written in C++, and interprets LPG random numbers into
instructions for each program. The program is executed from the first instruction to the last instruction;
the number of instructions is configurable in order to optimize results. The following crossover, mutation
methods, and fitness functions were used to give different results for each LGP language defined.

The Simple 7 Instruction LGP: Memory Management
For the first set of demonstrations, the following 7 instruction language was implemented:
This language is quite similar to popular esoteric languages.

> Increment Pointer location of programs memory increments by 1
< Decrement Pointer location of programs memory decrements by 1
+ Add Memory value at location is incremented by 1
- Subtract Memory value at location is decremented by 1
[Loop Begin Loops until Loop End or End/Break before last instruction. Number of iterations

determined by current memory value.
] Loop End End of loop as invoked above.
! End/Break Breaks loop.

Crossover Methods
a) Roulette Crossover: Instructions are modified between the top two programs at random indexes.
b) One point Crossover: Instructions are split at a random index between top two programs.

Mutation Methods
1. Random with chance of: (Maximum fitness – current fitness) * (1 / maximum instructions) on 2

best fit programs.
2. Increments/Decrements instruction with above chance on 2 best fit programs.

Fitness Methods
A. Sum of all memory locations:

 F=(∑ m)
B. Sum of all memory locations, with instruction count optimization:

 F=(∑m)−instruction count
max instructions

C. Word match memory locations in ASCII, goal = { L, E, A, R, N, I, N, G }
 F=∑|goal [i]−m [i]|

Demonstration Configuration

LCG ID # Instructions Memory # Programs Crossover Mutation Fitness
1 32 8 bytes 128 Method [a] Method [1] Method [A]
2 32 8 bytes 128 Method [a] Method [2] Method [A]
3 32 8 bytes 128 Method [b] Method [1] Method [B]
4 64 8 bytes 128 Method [b] Method [2] Method [B]

Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 9 10 20 30 40 50 60 70 80
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
f(x) = 0.4 ln(x) 0.21f(x) = 0.34 ln(x) + 0.05

Simple 7 Instruction LGP
Thousands of Generations vs. Fitness in Percent

LGP 1 Logarithmic (LGP 1) LGP 2

Logarithmic (LGP 2) LGP 3 LGP 4

LGP 5

Number of generations in thousands to 99% fitness threshold averaged over 100 LCG seeds.

The above plot shows how the different configurations of linear genetic programming can influence the
number of generations and accuracy of the algorithm. For instance, comparing fitness method A and B
(one reduces fitness when more instructions are used in the program, to give the program some
optimization), one can see that number of generations has dramatically increased, but with better overall
results. Another important parameter to consider is the number of possible instructions available to the
program, with large sets of instructions the number of possible program combinations increases, giving
the program more complexity, however potentially giving the possibility for an increased fitness value.
The other extreme is to reduce the complexity and wait for a sufficient fitness threshold in a reduced
programs set of instructions more efficiently. Customizing the fitness function even with the slightest
difference may yield completely different results. For instance, one may calculate program execution time
and reduce the computation needed in finding the solution, which would also drastically change the time

in order to produce a feasible program within threshold requirements. During this demonstration, we can
see that mutation method [2] is more effective at improving overall fitness by roughly 5-10% increase.
Logically this makes sense, as instructions are grouped according to type, where pointer
increment/decrement are beside one another, and so are value increment/decrement, allowing for more
variance as opposed to relying more heavily on entropy during program mutation.

The 10 Instruction LGP: Function Modeling and Estimation

The second style of demonstration will attempt to solve the following situation: The program will accept a
set of input values, and output a result correlating to the input. This type of LGP also outlines the use of a
strict fitness function, where the fitness is based upon a known outcome. This method of modeling is
estimation of the original function (and can become more/less accurate by altering a fitness threshold, +/-
the true fitness). The following language modifications were made in order to suite the nature of the
problem more accurately to use less instructions and memory locations:

> Increment Primary pointer location of programs memory increments by 1.
< Decrement Primary pointer location of programs memory decrements by 1.
+ Add Memory value at location is incremented by memory value at second memory location.
- Subtract Memory value at location is decremented by memory value at second memory location.
[Loop Begin Loops until Loop End or End/Break before last instruction. Number of iterations

determined by primary pointers current memory value.
] Loop End End of loop as invoked above.
) Increment Second pointer location of programs memory increments by 1.
(Decrement Second pointer location of programs memory decrements by 1.
* Multiply Memory value at location is multiplied by memory value at second memory location.
/ Divide Memory value at location is multiplied by memory value at second memory location.

Increasing the language size will increase generation count, however permit less instruction count overall.
The language is now capable of tracking two pointer locations of the memory, and invoking
multiplication and division between them; once the calculation has completed, the new value is stored
within the primary pointer location.

Crossover Method
One point Crossover: Instructions are split at a random index between two programs.

Mutation Method
Increments or Decrements with chance of: current fitness * (1 / maximum instructions) on 2 best fit
programs. This mutation method was chosen from the last test, as it produced better results as previously
discussed.

Fitness Methods
Match memory locations of goal functions (i[] is input, f[] is output memory)

A. f [0]=−i [0]+i [1]
B. f [1]=(i [0]−i [1])

2

C. f [2]=√(i [0]∗i [1])

Demonstration Configuration

LCG ID # Instructions Memory # Programs Fitness
5 16 4 floats 128 Method [A]
6 16 4 floats 128 Method [B]
7 16 4 floats 128 Method [C]
8 32 8 floats 256 Method [A]
9 32 8 bytes 256 Method [B]
10 32 8 bytes 256 Method [C]

Results

0

50

100

150

200

250

300

350

400

16 instructions, 4 bytes, 128
pool

32 instructions, 8 bytes, 256
programs

Number of generations in %99.99 accuracy threshold averaged over 1000 LCG seeds.

The above graph shows the function modeling according to three different functions, across two
configurations of memory sizes, program length, and the total number of programs to process (similar to a
gene pool). With increased execution time (roughly 66% slower by doubling these attributes), decreases
the generations required to reach the fitness threshold. However, it is important to note that these
demonstrations are run single threaded and linear sorting techniques. Judging by the difference of
equation, more generations are required to mimic more complex fitness functions. When implementing
very complex models (as would be the use of LGP in software), the time to compute would increase
directly with the complexity of the fitness function.

Analysis and Comparison

Linear Genetic Algorithm techniques can apply to a varying set of fitness functions, and can accurately
model many features of computing. Our demonstrations have shown that more abstract memory
management takes much more computing power than that of simple function modeling; where our tests
on average modeled the equation in ~296 generations (of like configurations), over that of our memory
sum and word matching, where it took upwards of 1000 generations or more.

Strengths and Weaknesses

An outright strength of linear genetic programming is its ease of implementation mostly due to its brute
force design. This technique of genetic programming is also capable of restricting the solution, as well as
the ability for completely unrestricted bounds of each generation’s capabilities. In short this technique is
able to be both restricted and unrestricted in its operating bounds. In addition, Linear Genetic
Programming is capable of short execution time because the generated program is capable of operating at
both low or high level depending on the complexity of the problem, and what features the host language
should wish to surface in the solution to the problem6.

Parallel Linear Genetic Programming is also a possibility, where individual threads may be used to
compile and/or compare programs to use increasingly paralleled computing architectures. Results can be
further improved through the use. Further parallelization can be implemented within the execution of the
program; this option would be most easily implemented within an interpretive language as opposed to the
GPL route2. More implications of parallelizing the programs execution may occur when combining results
of each processing thread, where memory should not be shared between them; otherwise thread execution
order will come into effect with different operations2. Since typical execution of these programs have
simple instruction sets, genetic programming would be ideal for GPU processing, where each processing
core could handle a single genome, and pooling the results in separate threads with shared memory4.

All of these customization methods also may implicate this techniques success in solving the problem.
For example, one may not realize that results produced by one configuration of the technique and its
fitness function may not approach the intended results, tweaking the fitness function and the techniques
operating parameters may produce better/worse results which may take up valuable time - all must be
taken into consideration.

By comparing linear methods (i.e. LGP) of genetic programming to multi-expression programming, or
any other tree-like structure being used to develop the output, LGP is able to have variable length
programs and has proven in more complex tests to be less error prone than that of MEP 6.
LGP typically follows a logarithmic solution curve, where increasing number of generations results in
high solution rate at the beginning with less probability of solution with increased generations computed
(As seen in our initial Simple LGP demonstration’s results). Other variants of genetic programming are
more linear in solution, however typically do not gain as much abrupt gain at lower generations, such as
the previously discussed MEP method, Genetic Expression Programming (GEP) which is also a linear
approach variant, as well as the Grammatical Evolution (GE) method (steady-state algorithm, similar to
MEP) 6.

The use of genetic programming in applications like Discipulus produce astoundingly simple and fast
results which would have previously taken much more time and money spent on hardware to complete.
However, the nature of Linear Genetic Programming allowed the solution to be deceptively simple. With
new techniques in the parallelization of genes (each program can be considered to be a task in a thread),
or even parallelization of tasks (simplification and optimization of sets of instructions) would speed the
process even further, allowing more complex programs to be produced.

As with any genetic programming, the expectation as to what needs to be solved needs to be known (its
fuzzy fitness measure). Should the fitness test be able to suit a more abstract method; something that is
determined by the programs ability to be more creative would really makes this method of programming
interesting.

Future Applications

The development of parallelization in Linear Genetic Programming are starting to emerge, some have
coined this new method as PLGP2. PLGP is structured to execute lists of instructions in parallel, whether
that execution is on a single machine, a GPU or within several machines in a distributed computing
cluster, the same architecture of the program applies. After this execution, all resulting segments are
combined to produce a programs output2. This method allows for near instantaneous crossover and
mutation speeds, as each segment has already been established and executed; mutation and recompilation
in a parallel fashion further increases PLGP’s performance 2. The key concept here is to foresee disruptive
instructions within a set of instructions, and group the disruptive regions at the beginning or end of the
segment to be parallelized; doing so will lessen reprocessing of gene segments2. This approach is very
similar to Dynamic Programming, where we are building from an existing solution already assumed, and
executing the areas of necessity. Further optimization in said PLGP methods can be achieved by reducing
redundant instructions in LGP code (Structural Introns) by further segmentation of code2. Through this
parallelization technique, longer programs can be executed in less time, allowing programs to tackle more
severe problems with longer length programs becoming more optimum to solve 2.

Once LGP is capable of this parallelization, computation could be moved to a GPU for even increased
capabilities, one such experiment was conducted by Simon Harding, allowing several hundred times
faster computation, for reference: these results were produced on a card with roughly 554 GFLOPS,
where todays cards are capable of driving 5000 GFLOPS (without breaking into server-line GPUs), never
mind the future. The experiment suggested various forms of APIs available, such as SH, Brook, PyGPU,
and Accelerator, and chose Accelerator4. The experiment yielded results with varying configurations;
however the main takeaway here was the sheer yield in performance. Limitations of this method are the
interface between CPU and GPU architectures capabilities of data transfer, and as of today not many APIs
are designed specifically for the purpose of genetic programming4. Possibly through the use of OpenCL,
or Nvidia’s CUDA further tests in the future for this level of parallelization is needed.

In conclusion, genetic programming whilst making using of linear genetic programming enables many
methods of customization to cater to the problem at hand. It is by no means a silver bullet solution to all
your needs, and must be tested on various scenarios before optimum use can be achieved. Through
optimization in software systems, as well as parallelization on different hardware platforms, this
technique will become increasingly useful in the future, where the demand for software is ever increasing,
and not enough time and resources to produce a solution as effectively as a machine capable of learning
it. One exception remains, defining a fitness method in order for an appropriate destination to be set is
entirely another matter, possibly with other computers defining those functions. Who knows, maybe its
computers all the way down.

References

1 A Field Guide to Genetic Programming. (n.d.). Retrieved December 3, 2014, from
http://cswww.essex.ac.uk/staff/poli/gp-field-guide/71LinearGeneticProgramming.html

2 Downey, C., & Zhang, M. (n.d.). Parallel Linear Genetic Programming. Retrieved December 7, 2014,
from http://ecs.victoria.ac.nz/foswiki/pub/Main/TechnicalReportSeries/ECSTR10-25.pdf

3 Francone, F. (n.d.). Discipulus™ Linear-Genetic-Programming Software: How it Works. Retrieved
December 7, 2014, from http://www.rmltech.com/doclink/Discipulus How It Works.pdf

4 Harding, S., & Banzhaf, W. (n.d.). Fast Genetic Programming on GPUs. Retrieved December 2, 2014,
from http://www.cs.mun.ca/~banzhaf/papers/eurogp07.pdf

5 Nordin, P., Banzhaf, W., & Francone, F. (n.d.). Efficient Evolution of Machine Code for CISC
Architectures using Blocks and Homologous Crossover. Retrieved December 7, 2014, from
http://www.rmltech.com/doclink/aigp31.pdf

6 Oltean, M., & Gros¸an, C. (n.d.). A Comparison of Several Linear Genetic Programming Techniques.
Retrieved
November 27, 2014, from https://www.complex-systems.com/pdf/14-4-1.pdf

Appendices

The following code was used for the first and second demonstrations with slight modifications to
behaviour using preprocessor defines for fitness, mutation and crossover methods.

GP.h
// COIS-4550H – Assignment #4 – LGP Demonstration
// Simon Willshire (0491272)
#include <float.h>
#include <stdlib.h>
#include <stdio.h>
#include <random>
#include <time.h>
#include <thread>
#include <chrono>

#define ITERATIONS 1000

#define FITNESS_A
//#define FITNESS_B
//#define FITNESS_C

#define FITNESS_A_FUNC (-i[0] + i[1])
#define FITNESS_B_FUNC ((i[0] - i[1]) * (i[0] - i[1]))
#define FITNESS_C_FUNC (sqrt(i[0] * i[1]))

#define MAX_INSTRUCTIONS 32
#define MAX_MEMORY 8
#define INITIAL_STRANDS 256

http://www.rmltech.com/doclink/Discipulus%20How%20It%20Works.pdf
https://www.complex-systems.com/pdf/14-4-1.pdf

#define MAX_FITNESS 0.f
#define RAND_INSTR (((float)rand() / RAND_MAX) * 10)

#define SCREEN_UPDATE 100000
#define SLEEP_WAIT 1

#define FITNESS_THRESHOLD -0.001f

enum INSTRUCTIONS
{
 INSTR_INCR = 0, // Increment Increment memory location
 INSTR_DECR = 1, // Decrement Decrement memory location
 INSTR_ADD = 2, // Add Add current memory value
 INSTR_SUB = 3, // Subtract Subtract current memory value
 INSTR_LPB = 4, // Loop Begin Following instructions until
 INSTR_LPE = 5, // Loop End This instruction, mem ptr
times.
 INSTR_SINC = 6, // Increment Secondary

INSTR_SDEC = 7, // Decrement Secondary
INSTR_MULT = 8, // Multiply primary / secondary memory values
INSTR_DIV = 9 // Divide primary / secondary memory values

};

class Genome
{
public:
 Genome(void);
 ~Genome(void);

 void status(void);
 void clear(void);

 void reset(void);

 unsigned int numInstruc;

 int layers;
 int location;

 int second;

 float* memory;
 unsigned char* instruction;
};

static bool interpret(Genome* g, int* index);
static void interpret(Genome* g);

static void parse_incr(Genome* g);
static void parse_decr(Genome* g);
static void parse_add(Genome* g);
static void parse_sub(Genome* g);
static void parse_lpb(Genome* g, int* index);

static float fitness(Genome* g);
static void crossover(Genome* g1, Genome* g2);
static void mutate(Genome* g1, Genome* g2, float curFitness);

GP.cpp
// COIS-4550H – Assignment #4 – LGP Demonstration
// Simon Willshire (0491272)

#include "GP.h"

Genome::Genome(void)
{
 instruction = new unsigned char[MAX_INSTRUCTIONS];
 memory = new float[MAX_MEMORY];
 this->reset();
}
Genome::~Genome(void)
{

delete[] instruction;
delete[] memory;

}

void Genome::status(void)
{
 for(int i = 0; i < MAX_INSTRUCTIONS; ++i)
 {
 switch(this->instruction[i])
 {
 case INSTR_INCR: printf(">"); break;
 case INSTR_DECR: printf("<"); break;
 case INSTR_ADD: printf("+"); break;
 case INSTR_SUB: printf("-"); break;
 case INSTR_LPB: printf("\n\t["); break;
 case INSTR_LPE: printf("]\n"); break;
 case INSTR_SINC: printf(")"); break;

 case INSTR_SDEC: printf("("); break;
 case INSTR_MULT: printf("*"); break;
 case INSTR_DIV: printf("/"); break;

 default: printf("?"); break; // Oh-oh!
 }
 }
}

void Genome::clear(void)
{
 for(int i = 0; i < MAX_MEMORY; i++)
 this->memory[i] = 0;

 location = 0;
numInstruc = 0;
layers = 0;
second = 0;

}

void Genome::reset(void)
{

int i;

location = 0;
numInstruc = 0;
layers = 0;
second = 0;

 for(i = 0; i < MAX_INSTRUCTIONS; i++)
instruction[i] = RAND_INSTR;

clear();
}

// Parse Functions

void parse_incr(Genome* g)

{
 if(g->location + 1 >= MAX_MEMORY)
 g->location = 0;
 else
 g->location++;
}
void parse_decr(Genome* g)
{
 if(g->location - 1 < 0)
 g->location = MAX_MEMORY;
 else
 g->location--;
}
void parse_add(Genome* g){ g->memory[g->location]++; }
void parse_sub(Genome* g){ g->memory[g->location]--; }
void parse_lpb(Genome* g, int* index)
{

// Go to next instruction!
 if(*index + 1 > MAX_INSTRUCTIONS)
 return;

 g->layers++;

 *index = *index + 1;

 int t;
 int b = MAX_INSTRUCTIONS; // If no proper end to the loop!

 for(int n = 0; n < g->memory[g->location]; n++)
 {
 // Look ahead for INSTR_LPE
 for(t = *index; t < MAX_INSTRUCTIONS; t++)
 {
 if(g->instruction[t] == INSTR_LPE)
 {
 b = t;
 break;
 }
 else
 interpret(g, &t);
 }
 }

 *index = b; // Jump to the end of the loop!
}
void parse_sinc(Genome* g)
{
 if(g->second + 1 >= MAX_MEMORY)
 g->second = 0;
 else
 g->second++;
}
void parse_sdec(Genome* g)
{
 if(g->second - 1 < 0)
 g->second = MAX_MEMORY;
 else
 g->second--;
}
void parse_mult(Genome* g)
{
 g->memory[g->location] *= g->memory[g->second];
}

void parse_div(Genome* g)
{
 if(g->memory[g->second] != 0)

g->memory[g->location] /= g->memory[g->second];
else
 g->memory[g->location] = 0.f;

}

// Interpret Functions

bool interpret(Genome* g, int* index)
{
 g->numInstruc++;

 switch(g->instruction[*index])
 {
 case INSTR_INCR: parse_incr(g); break;
 case INSTR_DECR: parse_incr(g); break;
 case INSTR_ADD: parse_add(g); break;
 case INSTR_SUB: parse_sub(g); break;
 case INSTR_LPB: parse_lpb(g, index); break;
 case INSTR_LPE: break;
 case INSTR_SINC: parse_sinc(g); break;
 case INSTR_SDEC: parse_sdec(g); break;
 case INSTR_MULT: parse_mult(g); break;
 case INSTR_DIV: parse_div(g); break;
 }
 return true;
}
void interpret(Genome* g)
{
 for(int i = 0; i < MAX_INSTRUCTIONS; i++)
 interpret(g, &i);
}

// Genome Functions

float fitness(Genome* g)
{
 float f = 0;
 const int i[2] = { rand(), rand() };

#if defined FITNESS_A
 f -= abs(FITNESS_A_FUNC - g->memory[0]);
#elif defined FITNESS_B
 f -= abs(FITNESS_B_FUNC - g->memory[1]);
#elif defined FITNESS_C
 f -= abs(FITNESS_C_FUNC - g->memory[2]);
#endif
 return f;
}

void crossover(Genome* g1, Genome* g2)
{
 unsigned char t;

 for(int i = 0; i < MAX_INSTRUCTIONS; ++i)
 {

for(int a = 0; a < std::floor(MAX_INSTRUCTIONS / 2); a++)
{
 t = g1->instruction[i];

 g1->instruction[i] = g2->instruction[i];
 g2->instruction[i] = t;

}
for(int a = std::ceil(MAX_INSTRUCTIONS / 2); a < MAX_INSTRUCTIONS; a++)
{
 t = g2->instruction[i];

 g2->instruction[i] = g1->instruction[i];
 g1->instruction[i] = t;

}
 }
}

void mutate(Genome* g1, Genome* g2, float curFitness)
{
 // Mutate bit instruction at random index
 int nm = (int)((float)(MAX_FITNESS - curFitness * 0.1f) * (1.f / MAX_INSTRUCTIONS));

if (nm > MAX_INSTRUCTIONS || nm < 0)
nm = MAX_INSTRUCTIONS;

 int ni1, ni2;

 for(int i = 0; i < nm; ++i)
 {
 ni1 = (int)((MAX_INSTRUCTIONS) * ((float)rand() / RAND_MAX));

 ni2 = (int)((MAX_INSTRUCTIONS) * ((float)rand() / RAND_MAX));

 if((rand() & 0x1) == 0)
(g1->instruction[ni1])++;

 else
(g1->instruction[ni1])--;

if((rand() & 0x1) == 0)
(g2->instruction[ni2])++;

else
(g2->instruction[ni2])--;

if(g1->instruction[ni1] < 0)
g1->instruction[ni1]=10;

else if (g1->instruction[ni1] > 10)
g1->instruction[ni1]=0;

if(g2->instruction[ni2] < 0)
g2->instruction[ni2]=10;

else if (g2->instruction[ni2] > 10)
g2->instruction[ni2]=0;

}
}

int main(int argc, char *argv[])
{

int curSeed = 0;
int generations, i;

 int maxFitIndex;

float maxFit, tempFit;

std::vector<int> times;

char stime[9];

Genome mGenomes[INITIAL_STRANDS];

for(int s = 0; s < ITERATIONS; s++)
{

for(i = 0; i < INITIAL_STRANDS; i++)

mGenomes[i].reset();

generations = maxFitIndex = 0;
maxFit = tempFit = -99999999;

while(1)
{

for(i = 0; i < INITIAL_STRANDS; ++i)
interpret(&mGenomes[i]);

if((generations < SCREEN_UPDATE && ((generations <= 500 &&
generations % 100 == 0) || (generations < 10000 && generations % 1000 == 0) ||
generations % 10000 == 0))

|| generations % SCREEN_UPDATE == 0
|| maxFit >= FITNESS_THRESHOLD)
{

 std::this_thread::sleep_for(std::chrono::milliseconds(SLEEP_WAIT));

 if(maxFit >= FITNESS_THRESHOLD) // Fitness threshold met?
{

system("cls");
printf("\nIt: %i, Fitness threshold met, took %i

generations.\n", s, generations);
printf("Final Program: \n");
mGenomes[maxFitIndex].status();
printf("\n");

times.push_back(generations);
break;

}
}

// Select the highest fitness of the strands
for(i = 0; i < INITIAL_STRANDS; ++i)
{

tempFit = fitness(&mGenomes[i]);

if (maxFit < tempFit)
{

maxFit = tempFit;
maxFitIndex = i;

if (tempFit < FITNESS_THRESHOLD)
{
 crossover(&mGenomes[maxFitIndex], &mGenomes[i]);
 mutate(&mGenomes[maxFitIndex], &mGenomes[i], tempFit);
}
else
 break;

}
else

mutate(&mGenomes[i], &mGenomes[i], tempFit);
 mGenomes[i].clear();

 }

++generations;
 }
 }

 system("cls");

 int tcount = 0;
 float averageGen = 0.f;

 int msize = 0;

 for(auto t : times)
averageGen += t;

averageGen /= times.size();

printf("Average generations for all seeds: %f\n", averageGen);

scanf("%c");

return 0;
}

